2025年数学知识点归纳总结(优质8篇)
围绕工作中的某一方面或某一问题进行的专门性总结,总结某一方面的成绩、经验。那关于总结格式是怎样的呢?而个人总结又该怎么写呢?以下是小编精心整理的总结范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
数学知识点归纳总结篇一
【知识点】:
1、为学生创设具体的数学情境,通过描一描树叶的边线,摸一摸课桌数学书的边线,再量一量自己的腰围和头围,从而知道了一个图形一周的长度就是这个图形的周长。
2、学生在动手操作中,可以画出并能计算出图形的周长。
【知识点】:
1、为学生创设游园的情境,引导学生体验用不同的方法去计算小公园的周长。就是把围成小公园的所有线段加在一起。
2、算一算中出现了4种不同的图形,鼓励学生用多种方法计算,为后面学习长方形、正方形周长的计算作好铺垫。
【知识点】:
1、学生要明确已知的条件和问题,然后先独立思考,再在小组中交流自己的想法,鼓励学生用不同的方法来解决问题,从而发现(长+宽)﹡2是求长方形周长最简便的方法。不必用公式化的算式去约束学生,他们可以自己喜欢的方法去计算。
2、在做一做中出现的两个不同的长方形可以让学生用自己喜欢的方法求周长。
【知识点】:
1、学生要明确已知条件和问题,利用学习长方形周长的知识经验,知识迁移到怎样求出正方形的周长,就是把正方形的四条边长加起来,还可以用边长乘4。
2、做一做中出现的两个正方形周长的计算,可以放手让学生用自己喜欢的方法去解决。
3、练一练中的第2小题要让学生明确求篱笆长多少米,就是在求正方形实验园地的周长。
【知识点】:
1、练习六中的1——8小题通过计算各种图形的不同周长,进一步巩固学生已经掌握的计算周长的方法。
而第9小题则是让学生发现图形之间的变化关系,从而发现这四幅图形的周长是相等的。
2、在实践活动中,可以让学生先计算三个周长的大小,并说出估计的过程或理由,然后再让学生自主选择测量工具和测量方式。可以独立测量,也可以是小组合作进行,最后组织学生对其估计和测量的结果进行对比,修正自己的估计和测量的结果。
【知识点】:
在这节实践活动课中,要引导学生认真仔细的观察图片中的数学信息,从而运用周长、乘除法、搭配方法等数学知识和方法来解决实际生活中的简单问题。
数学知识点归纳总结篇二
1.根据方向和距离可以确定物体在平面图上的位置。
2.在平面图上标出物体位置的方法:
先用量角器确定方向,再以选定的单位长度为基准用直尺确定图上距离,最后找出物体的具体位置,并标上名称。
3.描述路线图时,要先按行走路线确定每一个参照点,然后以每一个参照点建立方向标,描述到下一个目标所行走的方向和路程,即每一步都要说清是从哪儿走,向什么方向走了多远到哪儿。
4.绘制路线图的方法:
(1)确定方向标和单位长度。
(2)确定起点的位置。
(3)根据描述,从起点出发,找好方向和距离,一段一段地画。除第一段(以起点为参照点)外,其余每一段都要以前一段的终点为参照点。
(4)以谁为参照点,就以谁为中心画出“十”字方向标,然后判断下一地点的方向和距离。
数学知识点归纳总结篇三
1、按定义分类: 2.按性质符号分类:
注:0既不是正数也不是负数.
1.相反数
(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.
(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.
(3)互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.
2.绝对值 |a|0.
3.倒数 (1)0没有倒数 (2)乘积是1的两个数互为倒数,a、b互为倒数。
4.平方根
(1)如果一个数的平方等于a,这个数就叫做a的平方根。一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a0)的平方根记作。
(2)一个正数a的正的平方根,叫做a的算术平方根,a(a0)的算术平方根记作。
5.立方根
数轴定义: 规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可;
1.对于数轴上的任意两个点,靠右边的点所表示的数较大;
3.无理数的比较大小:
1.加法
2.减法:减去一个数等于加上这个数的相反数;
3.乘法
几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0。
4.除法
除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数都得0。
5.乘方与开方
(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数。
(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方。
(3)零指数与负指数
1.有效数字:
一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.
2.科学记数法:
把一个数用 (110,n为整数)的形式记数的方法叫科学记数法.
有了上文梳理的人教版数学期中考试知识点汇总(2),相信大家对考试充满了信心,同时预祝大家考试取得好成绩。
数学知识点归纳总结篇四
如果一组等距的平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。
平行定理:经过直线外一点,有且只有一条直线与这条直线平行
推论:如果两条直线都和第三条直线平行,这两条直线也互相平行
证明两直线平行定理:
同位角相等,两直线平行
内错角相等,两直线平行
同旁内角互补,两直线平行
两直线平行推论:
两直线平行,同位角相等
数学知识点归纳总结篇五
全面复习基础知识,加强基本技能训练的第一阶段的复习工作我们已经结束了,在第二阶段的复习中,反思和总结上一轮复习中的遗漏和缺憾,会发现有些知识还没掌握好,解题时还没有思路,因此要做到边复习边将知识进一步归类,加深记忆;还要进一步理解概念的内涵和外延,牢固掌握法则、公式、定理的推导或证明,进一步加强解题的思路和方法;同时还要查找一些类似的题型进行强化训练,要及时有目的有针对性的补缺补漏,直到自己真正理解会做为止,决不要轻易地放弃。
这个阶段尤其要以课本为主进行复习,因为课本的例题和习题是教材的重要组成部分,是数学知识的主要载体。吃透课本上的例题、习题,才能有利于全面、系统地掌握数学基础知识,熟练数学基本方法,以不变应万变。所以在复习时,我们要学会多方位、多角度审视这些例题习题,从中进一步清晰地掌握基础知识,重温思维过程,巩固各类解法,感悟数学思想方法。复习形式是多样的,尤其要提高复习效率。
另外,现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造了的题,有的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是课本中题目的引申、变形或组合,课本中的例题、练习和作业题不仅要理解,而且一定还要会做。同时,对课本上的《阅读材料》《课题研究》《做一做》《想一想》等内容,我们也一定要引起重视。
注重课堂学习。
在任课老师的指导下,通过课堂教学,要求同学们掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,通过对基础知识的系统归纳,解题方法的归类,在形成知识结构的基础上加深记忆,至少应达到使自己准确掌握每个概念的含义,把平时学习中的模糊概念搞清楚,使知识掌握的更扎实的目的,要达到使自己明确每一个知识点在整个初中数学中的地位、联系和应用的目的。上课要会听课,会记录,必须要把握每一节课所讲的知识重点,抓住关键,解决疑难,提高学习效率,根据个人的具体情况,课堂上及时查漏补缺。
夯实基础知识。
在历年的数学中考试题中,基础分值占的最多,再加上部分中档题及较难题中的基础分值,因此所占分值的比例就更大。我们必须扎扎实实地夯实基础,通过系统的复习,我们对初中数学知识达到“理解”和“掌握”的要求,在应用基础知识时能做到熟练、正确和迅速。
有的考题会对需要考查的知识和方法创设一个新的问题情境,特别是一些需要有较高区分度的试题更是如此;每个中档以上难度的数学试题通常要涉及多个知识点、多种数学思想方法,或者在知识交汇点上巧妙设计试题。因此,我们每一个同学要学会思考,老师上课教给我们的是思考问题的角度、方法和策略,我们要用学到的方法和策略,在解决具有新情境问题的过程中,感悟出如何进行正确的思考。
注意知识的迁移。
课本中的某些例题、习题,并不是孤立的,而是前后联系、密切相关的,其他学科的知识也和数学有着千丝万缕的联系,我们要学会从思维发展的最近点出发,去发现、研究和展示这些知识的内在联系,这样做不仅有助于自己深刻理解课本知识,有利于强化知识重点,更重要的是能有效地促进自己数学知识网络和方法体系的构建,使知识和能力产生良性迁移,达到触类旁通的效果,通过探究课本典型例题、习题的内在联系,让我们在深刻理解课本知识的同时,更有效地形成知识网络与方法体系。例如一元二次方程的根的判别式,不但可以解决根的判定和已知根的情况求字母系数,还可以解决二次三项式的因式分解、方程组的根的判定及二次函数图象与横轴的交点坐标。
数学知识点归纳总结篇六
数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
知识整合。
进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
3.培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法。
高考数学解答题部分主要考查七大主干知识:
第一,函数与导数。主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用。这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。
第五,概率和统计。这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。
第七,解析几何。是高考的难点,运算量大,一般含参数。
高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。
对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。
对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,所有数学考试最终落在解题上。
考纲对数学思维能力、运算能力、空间想象能力以及实践能力和创新意识都提出了十分明确的考查要求,而解题训练是提高能力的必要途径,所以高考复习必须把解题训练落到实处。训练的内容必须根据考纲的要求精心选题,始终紧扣基础知识,多进行解题的回顾、总结,概括提炼基本思想、基本方法,形成对通性通法的认识,真正做到解一题,会一类。
在临近高考的数学复习中,考生们更应该从三个层面上整体把握,同步推进。
1.知识层面。
也就是对每个章节、每个知识点的再认识、再记忆、再应用。数学高考内容选修加必修,可归纳为12个章节,75个知识点细化为160个小知识点,而这些知识点又是纵横交错,互相关联,是“你中有我,我中有你”的。考生们在清理这些知识点时,首先是点点必记,不可遗漏。再是建立相关联的网络,做到取自一点,连成一线,使之横竖纵横都逐个、逐级并网连遍,从而牢固记忆、灵活运用。
2.能力层面。
从知识点的掌握到解题能力的形成,是综合,更是飞跃,将知识点的内容转化为高强的数学能力,这要通过大量练习,通过大脑思维、再思维,从而沉淀而得到数学思想的精华,就是数学解题能力。我们通常说的解题能力、计算能力、转化问题的能力、阅读理解题意的能力等等,都来自于千锤百炼的解题之中。
3.创新层面。
数学解题要创新,首先是思想创新,我们称之为“函数的思想”、“讨论的方法”。函数是高中数学的主线,我们可以用函数的思想去分析一切数学问题,从初等数学到高等数学、从图形问题到运算问题、从高散型到连续型、从指数与对数、从微分与积分等等,这一切都要突出函数的思想;另外,现在的高考题常常用增加题目中参数的方法来提高题目的难度,用于区别学生之间解题能力的差异。
我们常常应对参数的策略点是消去参数,化未知为已知;或讨论参数,分类找出参数的含义;或分离参数,将参数问题化成函数问题,使问题迎刃而解。这些,我称之为解题创新之举。
还有一类数学解题中的创新,是代换,构造新函数新图形等等,俗称代换法、构造法,这里有更大的思维跨越,在解题的某一阶段有时出现山穷水尽,无计可施时,用代换与构造,就会使思路豁然开朗、柳暗花明、思路顺畅、解答优美,体现数学之美。常见的代换有变量代换,三角代换,整体代换;常用的构造有构造函数、构造图形、构造数列、构造不等式、构造相关模型等等。
总之,数学是一门规律性强、逻辑结构严密的学科,它有规律、有模型、有式子、有图形,只要我们掌握了它的规律、看清了模型、了解了式子、记住了图形,数学就会变成一门简单而有趣的科学。这种战略上的藐视与战术上的重视,将会使考生们超常发挥,取得优异的成绩。
数学知识点归纳总结篇七
高考数学知识点:动点的轨迹方程动点的轨迹方程:
在直角坐标系中,动点所经过的轨迹用一个二元方程f(x,y)=0表示出来。
求动点的轨迹方程的基本方法:
直接法、定义法、相关点法、参数法、交轨法等。
用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。
动点所满足的条件不易表述或求出,但形成轨迹的动点p(x,y)却随另一动点q(x′,y′)的运动而有规律的运动,且动点q的轨迹为给定或容易求得,则可先将x′,y′表示为x,y的式子,再代入q的轨迹方程,然而整理得p的轨迹方程,代入法也称相关点法。一般地:定比分点问题,对称问题或能转化为这两类的轨迹问题,都可用相关点法。
求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。用什么变量为参数,要看动点随什么量的变化而变化,常见的参数有:斜率、截距、定比、角、点的坐标等。要特别注意消参前后保持范围的等价性。多参问题中,根据方程的观点,引入n个参数,需建立n+1个方程,才能消参(特殊情况下,能整体处理时,方程个数可减少)。
求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。可以说是参数法的一种变种。用交轨法求交点的轨迹方程时,不一定非要求出交点坐标,只要能消去参数,得到交点的两个坐标间的关系即可。交轨法实际上是参数法中的一种特殊情况。
(l)建系,设点建立适当的坐标系,设曲线上任意一点的坐标为m(x,y);
(2)写集合写出符合条件p的点m的集合p(m);
(3)列式用坐标表示p(m),列出方程f(x,y)=0;
(4)化简化方程f(x,y)=0为最简形式;
(5)证明证明以化简后的方程的解为坐标的点都是曲线上的点,
数学知识点归纳总结篇八
第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二:平面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。
第三:数列。
数列这个板块,重点考两个方面:一个通项;一个是求和。
第四:空间向量和立体几何。
在里面重点考察两个方面:一个是证明;一个是计算。
第五:概率和统计。
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一等可能的概率,第二事件,第三是独立事件,还有独立重复事件发生的概率。
第六:解析几何。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是20__年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七:押轴题。
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。
1.立足学科基础,强调能力立意。
命题以中学数学基础知识为载体,坚持能力立意,全面考查了空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。如理15、文16以集合语言、常用逻辑用语为载体,强调正确推理的形式和规则,突出考查抽象概括能力和推理论证能力;理17涉及的图形翻折及文19的“割补”或“等积变换”需要考生分析图形中基本元素及其相互关系,突出考查空间想象能力;理19的解答,考生可从特殊入手,通过合情推理得出结论并加以验证,也可通过演绎推理直接证明,突出考查推理论证能力;文12以椭圆的定义为载体,探究在新情境下“椭圆”生成的基本步骤和图形特征,重现“轨迹”的基本研究方法,突出考查抽象概括能力;理10以计数原理为载体,需要考生从题干及备选项中领悟将“选球方式”抽象为“颜色模式”,考查抽象概括能力与学习潜能。
2.关注数学本质,突出教育价值。
命题立足数学本质,从数学各分支的核心内容、学科思想以及相关分支的教育价值入手设置试题,合理地检测学生的基本数学素养。如统计与概率突出考查对统计量的理解与应用以及运用样本估计总体的思想,要求考生不仅会计算统计量而且会合理地根据统计量对问题作出分析与解释;函数与导数的考查突出导数的工具作用,考查考生在解题过程中对“常量”与“变量”辩证关系的理解以及综合运用导数研究函数性质的能力;解析几何突出“解析法”,要求考生将几何问题代数化,并合理地运用代数手段解决几何问题,体现解析几何的基本思想;立体几何突出对空间想象能力与推理论证能力的考查;三角突出三角变换及三角函数的图象与性质的研究;数列关注等差数列、等比数列的基本性质与运算,突出“基本量法”。
3.坚持课标理念,凸显导向功能。
命题紧扣课标理念,充分发挥对中学数学教学的正确导向作用。其一,引导中学数学教学全面落实课程标准,不随意忽视所谓的“冷门知识”,如理19、理14等。其二,引导中学数学教学回归教材,克服脱离教材的“题海战术”,如理8、文18等取材于教材习题的合理改造。其三,引导中学数学教学关注通性通法,淡化特殊技巧,每道试题的解题思路都是在数学思想方法的统领下自然形成的,试题的设计追求“新而不难,难而不怪”。其四,引导中学数学教学既关注“结果性知识”,也关注“过程性知识”,使学生既知其然,又知其所以然,如理10、理18等。其五,引导中学数学教学基于已有知识与方法的创造性运用而关注创新意识的培养,如理10以多项式展开式为背景,考查考生创造性地解决新情境下的数学问题;文12依托新情境材料,考查考生阅读理解、提取相关信息解决问题的能力。