时空阅读网

最新因数与倍数教案及板书设计(实用9篇)

时间: 2025-03-05 06:38:54 

作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么教案应该怎么制定才合适呢?下面是我给大家整理的教案范文,欢迎大家阅读分享借鉴,希望对大家能够有所帮助。

因数与倍数教案及板书设计篇一

由于学生对辨析、理清除尽和整除的关系、整除的两种读法等易混淆的概念,使学生明确一个数是否是另一个数的倍数或因数时,必须是以整除为前提,因数和倍数是相互依存的概念,不能独立存在。所以本节课的教学我把重点定位于理解因数和倍数的含义。

因数与倍数教案及板书设计篇二

1.我能理解什么是质数和合数,掌握了判断质数、合数的方法。

2.我知道100以内的质数,记住了20以内的质数。

3.我能在自主探究中独立思考,合作探究时畅所欲言。

能理解质数、合数的意义,正确判断一个数是质数还是合数。

用恰当的方法找出100以内的质数;会给自然数分类。

一、导入新课。

二、检查独学。

1.互动分享收获。

2.质疑探讨。

3.试试身手:第23页做一做。

三、合作探究。

1.小组合作,利用课本24页的表格,用恰当的方法找出100以内的质数,做一个质数表。

2.展示、交流:你们是怎样找出100以内质数的?

3.小组讨论:

(1)有没有最大的质数或合数?

(2)根据因数的个数,可把非零自然数分成哪几类?

4.我能很快熟记20以内的质数。

5.独立思考:

(1)是不是所有的`质数都是奇数?

(2)是不是所有的奇数都是质数?

(3)是不是所有的合数都是偶数?

(4)是不是所有的偶数都是合数?

6.组内交流。

因数与倍数教案及板书设计篇三

师:还有其它摆法吗? 还有不同的乘法算式吗?猜一猜,他是怎样摆的?

学生交流几种不同的摆法。随着学生交流一一演示。

师:12个同样大小的正方形能摆出不同的的长方形,可以用乘法算式来表示。千万别小看这些乘法算式,我们这节课的研究就从这些算式中开始。我们就以最后一道乘法算式为例,(板书:3×4=12, 3和4在乘法算式叫(因数),那12呢?(积)因为: 3×4=12,我们可以说3是12的因数,那4(也是12的因数,),3和4都是12的因数,反过来呢?12是3的倍数,12(也是4的倍数)。同学们很有迁移的能力。这就是我们今天所要研究的两个重要的概念:因数与倍数。(板书课题) (齐说3、4、12)

师:刚才这位同学的发言就象绕口令,你们听明白了吗?谁再来说说?

(4)质疑:如果我说12是倍数,1是因数,行吗?引导学生说出12是谁的倍数,1是谁的因数。

小结:倍数和因数是指两个数之间的关系,所以不能单独说谁是倍数,谁是因数。一定要说“谁是谁的倍数,谁是谁的因数。”

(5)举例内化

1、同桌出题互说。

师:你能写一道乘法算式,让同桌说说( )是( )的倍数,( )是( )的因数吗?生汇报。

2、老师根据学生出的一道乘法算式随机得到一道除法算式让学生说一说:( )是( )的倍数,( )是( )的因数。

小结:看来,乘法算式和除法算式中都存在着倍数和因数关系。

师指明:,为了研究方便,我们在说倍数和因数时,所说的数一般指不是0的自然数。因此以后小数与分数就不讨论因数倍数关系。

(3)、小结:好了,刚才我们已经初步研究了因数和倍数,下面我们进一步来研究因数和倍数。

(一)探索找因数的方法

生说略。还有补充的吗?能不能说3是20的因数?

师:3、18、36都是36的因数,只有这3个吗?(1、2……)

师:看来要找出36的一个因数并不难,难就难在你能不能把36的所有因数既不重复又不遗漏地全部找出来呢?因为这个问题有点难度,你可以独立完成也可以同桌合作完成,请你选择你喜欢的方式,找出36的所有因数,想一想怎么找不会遗漏?如果你全部找到了,填在作业纸的横线上。同时将你找因数的方法写在横线的下方框内。

生写后小组内交流。学生填写时师巡视搜集作业。

2、交流作业。(略)

出示学生的不同作业。交流找因数的方法。

师:出示36的因数有:1、36;2、18;3、12;4,9; 6

你知道这个同学是怎样找出36的因数的吗?看着这个答案你能猜出一点吗?

生:他是有规律,一对一对找的,哪两个整数相乘得36,就写上。

师:找到什么时候为止? 那为什么算到6,你们就不往后找了呢?相同的只写一个6。

师:他是用乘法找的,其他同学还有补充吗?

生:可以用除法找。用36除以1得36,36和1就是36的因数。再用36除以2……

师:老师发现不管是用乘法还是用除法,你们都是从几开始的啊?为什么?(板书:有序)

师:我也是跟你们一样很有顺序,从1开始找的`。我们一起来写出36的因数,好吗?根据算式,一对对找,找到了1就找到了36,找到了2就找到了18,依此类推,按从小到大的顺序排列。(板书:36的因数有:1、2、3、4、6、9、18、36。) 写的时候可以一头一尾地写。这样也可以做到答案的有序性。

师:36的因数还可以这样表示。(小黑板:板书集合圈图)

4、启迪思考。

师:现在你找一个数的因数有办法了吗? 怎样才能有序地、既不重复、又不遗漏地找出一个数的所有因数呢?在小组里说一说。

学生想到的方法可能是:从小到大找;一对一对找;找到两个数接近为止。

3、学生小结。好,我们已经说了那么多,谁能完整地说一说?

4、尝试练习:

5、发现一个数因数的特征

师:刚才我们找了36、20、18和5的因数,请大家仔细观察这4个数的所有因数。你发现这些数的因数有什么共同的特点?把你的发现告诉小组里的同学。

(先思考,再交流)还有吗?36的因数除了这些还有吗?说明一个数因数的个数是(有限的)(板书)

师(小结):一个非零自然数的最小因数是1,最大因数是它本身,因数的个数是有限的。

1、判一判。(小黑板出示)

2、填一填。

因数与倍数教案及板书设计篇四

撰写公开课教案是每个教师都必需熟悉的一项工作,好的公开课教案能够激发同学兴趣,培养同学多方面的能力,有效提高课堂教学效率。本站提供的这套人教新课标版五年级下册《因数和倍数》公开课教案符合新课标的规范,思路清晰,结构合理,适合同学的年龄特征,与素质教育的要求相吻合,具有科学性、实用性等优点。

第二单元。

教学目标:

1、同学掌握找一个数的因数,倍数的方法;

2、同学能了解一个数的因数是有限的,倍数是无限的;

4、培养同学的观察能力。

教学重点:掌握找一个数的因数和倍数的方法。

教学难点:能熟练地找一个数的因数和倍数。

1、出示主题图,让同学各列一道乘法算式。

2、师:看你能不能读懂下面的算式?

出示:因为2×6=12。

所以2是12的因数,6也是12的因数;

12是2的倍数,12也是6的倍数。

3、师:你能不能用同样的方法说说另一道算式?

(指名生说一说)。

那你还能找出12的其他因数吗?

4、你能不能写一个算式来考考同桌?同学写算式。

师:谁来出一个算式考考全班同学?

5、师:今天我们就来学习因数和倍数。(出示课题:因数倍数)。

齐读p12的注意。

1、出示例1:18的因数有哪几个?

同学尝试完成:汇报。

(18的因数有:1,2,3,6,9,18)。

师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)。

师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的`。

2、用这样的方法,请你再找一找36的因数有那些?

汇报36的因数有:1,2,3,4,6,9,12,18,36。

师:你是怎么找的?

举错例(1,2,3,4,6,6,9,12,18,36)。

师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)。

仔细看看,36的因数中,最小的是几,最大的是几?

看来,任何一个数的因数,最小的一定是(),而最大的一定是()。

3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。

4、其实写一个数的因数除了这样写以外,还可以用集合表示:如。

18的因数。

小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

从最小的自然数1找起,也就是从最小的因数找起,一直找到它的自身,找的过程中一对一对找,写的时候从小到大写。

1、我们一起找到了18的因数,那2的倍数你能找出来吗?

汇报:2、4、6、8、10、16、……。

师:为什么找不完?

你是怎么找到这些倍数的?(生:只要用2去乘1、乘2、乘3、乘4、…)。

那么2的倍数最小是几?最大的你能找到吗?

2、让同学完成做一做1、2小题:找3和5的倍数。

汇报3的倍数有:3,6,9,12。

师:这样写可以吗?为什么?应该怎么改呢?

改写成:3的倍数有:3,6,9,12,……。

你是怎么找的?(用3分别乘以1,2,3,……倍)。

5的倍数有:5,10,15,20,……。

师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示。

2的倍数3的倍数5的倍数。

师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

(一个数的倍数的个数是无限的,最小的倍数是它自身,没有最大的倍数)。

我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

完成练习二1~4题。

课后反思:

因数与倍数教案及板书设计篇五

下面是关于五年级下册的说课稿《因数与倍数》,仅供参考!

《倍数和因数》是小学人教版课程标准实验教材五年级下册第2单元的内容,也是小学阶段“数与代数”部分最重要的知识之一。《因数和倍数》的学习,是在初步认识自然数的基础上,探究其性质,其中涉及到的内容属于初等数论的基本内容,相当抽象。在这一内容的编排上与以往的教材有所不同,没有数学化的语言给“整除”下定义,而是在本课时通过乘法算式借助整除的模型na=b直接给出因数与倍数的概念。在地位上,这节课是因数、倍数的概念引入,为本单元后面的内容、以及第四单元的最大公因数、最小公倍数提供了必需且重要铺垫。(注:教学目标、教学重、难点略)。

本节课内容是五年级下册的内容,但采取借班上课的形式,选取了四年级的学生。在此之前,学生已经已经分段认识了亿以内的整数,基本完成了整数四则运算的学习(本学期刚学完)。但学生由于年龄的关系和个人思维发展的不同,在抽象能力和语言表达和思考的全面性方面需要老师的进一步引导。但由于本课是由乘法引入,且减少了以前老教材关于“整除”等繁杂概念,大大简化了叙述和记忆的过程,预期学生是可以理解并掌握的。

本节课的在设计理念上,本人总结四点特点,而这四个特点也。

刚好在我教学的四个环节中生成:

第一,从生活切入,实现数形结合,完成概念的有意义建构。

数论的内容,如果从数字本身出发进行研究,对小学生来说就抽象了些。本节课,教师以解决问题“12个小正方形拼成一个长方形,有哪几种拼法?”为引子,让学生在解决这个问题的过程中,学习数学概念,避开了抽象,有利于帮助学生完成有意义的建构。同时,在解决问题时,学生思考“哪几种拼法”时,教师给出了不同的建议,可以想象,也可以在本子上画一画,这样既符合不同的学生思维发展有不同,老师有针对的引导,其次,使数与形有机地结合,这样,学生对概念的理解不仅是数字上的认识,而且能与操作活动与图形描述联系起来。学生经历了“先形后数”的过程,也就是知识抽象的过程。

第二,抓住学生思维的“最近发展区”,促使学生学会有序思考,从而形成基本的技能与方法。

能列举一个数的因数,是本节课技能目标中很重要的一部分。教学活动中,教师牢牢的抓住了学生思维的“最近发展区”,让学生在已有经验的基础上,独立的列举一个数的因数,在集体交流的过程中,教师适时的追问“用什么方法找的?”,让学生充分暴露个性化的思考方法,教师点拨出学生思维中各自的优势:一对一对的找;从“1”开始有序的找,再通过有效分析,取得学生整体的认同。这样的设计,让学生在独立思考——集体交流——互相讨论过程中,学习有序思考,从而形成基本技能与方法,做到即关注了过程,又关注了结果。

第三,充分借助生成的素材,实现有效的合作探索,引导学生在比较中归纳寻找共性。

一个数的因数的特征,单凭记忆也不难接受,为防止学生进行“机械学习”,教师提出问题“任意一个自然数的因数有什么特点?”,让学生观察6、11、16和24的因数,思考:一个数的因数的个数是有限的还是无限的?其中最小的是几?最大的是几?教师在研究方法方面给学生提供了引导,学生的思维有了明确的指向,便于通过探索发现规律。

第四,重视数学意义的渗透与拓展,力求用数学的本质吸引学生,促进学生学习数学的持续发展。

数学教学,要树立为学生的继续学习、终身发展服务的意识,不能关注短效、急功近利。本节课的设计,教师就注意到了学生的学习后劲。如在备课之初,在是否需要完美数的介绍这一抉择上,教师反复考虑:由于一节课的时间有限,为表达因数与倍数的整体关系,很多老师在设计内容时,都在一个课时就将求因数和求倍数的方法全部包含。但最终本人选择舍去求倍数,把它放在了后面的课时学习,将完美数的介绍以及小故事纳入本节课的教学,虽然此内容和现行学习任务之间的关系都不大,但却是学生继续学习数学所需要的,因为只有有了文化的气息,数学才变得有了灵魂,让学生感觉数学的厚重、数学的魅力,才能让学生透过枯燥,产生对数学的积极情感,增强学习数学的持久动力。

上完课后,一些老师认为有部分学生并掌握到教学目标里的知识技能目标,未掌握到有效的方法,学生思维水平与表达方式有限,把这个内容拿来在四年级上并不合适。首先,本人认为,教师这节课的引导是有不足的,教学目标并未很好的实施。本人也曾经看过有大量名师找了四年级甚至三年级的学生上过这节课。从理论上说,只要基本能完成整数乘除法的学习的学生都可以进行这部分的学习。当然,放在每个年级来上出现的效果理应都会有不同。同样,这节课四年级的学生有着他们自己的思维水平,由于学生的思维发展水平有限,出现一些思维的无序是非常合理的,作为老师不能太关注短效,不能太急功近利。然而,究竟是否该放在四年级来上,如果可以上,究竟怎样把握教法与学法的度,各家之谈,本人仅是做了一次不成熟的尝试,只希望抛砖引玉,老师们可以给出更多的意见,作为一次有意义的谈论。

因数与倍数教案及板书设计篇六

教学内容:

教学过程:

一、创设情境,引入新课。

1、互为关系的辨析(以人与人之间的关系,如你和爸爸、妈妈的关系,你和老师之间的关系,存在这些关系的双方互相的关系表示为例,辨析互为关系)。

2、小结互为关系,引入课题。(板书课题:因数与倍数)。

二、探究新知。

(一)认识因数与倍数。

1、回顾学过学过的几类数(自然数,小数,分数)。

2、揭示因数与倍数的研究范围,(现在我们来研究自然数中数与数之间的关系。)。

3、整除算式的辨别(给下面算式分类,并描述算式的特征)(出示课本p5例1)。

4、学生自我分类,小组讨论分类结果,完善分类。

5、辨析整除的意义,自学了解因数、倍数的意义,组内交流自学成果,议一议,辨明因数与倍数。

6、全班交流,选择分类后的算式,说说什么是因数和倍数?说说谁是谁的因数,谁是谁的倍数。

7、当堂训练。

(1)完成课本p5下面的“做一做”(独立说、组内互相说、全班交流说)(2)判断:课本p7t5(1)。

1、自学课本p6例2和例3,初步了解因数与倍数的求法。

(1)完成练习二t1(独立练习、组内交流完善、选择性全班交流)。

(2)完成练习二t5(独立判断、组内交流完善、全班交流)。

三、总结与分享。

与老师和同学分享你的收获与感悟。

因数与倍数教案及板书设计篇七

【知识点】:

1、认识自然数和整数,联系乘法认识倍数与因数。

像0,1,2,3,4,5,6,…这样的数是自然数。

像-3,-2,-1,0,1,2,3,…这样的数是整数。

2、我们只在自然数(零除外)范围内研究倍数和因数。

3、倍数与因数是相互依存的关系,要说清谁是谁的倍数,谁是谁的因数。

补充【知识点】:

一个数的倍数的个数是无限的。

探索活动(一)2,5的倍数的特征。

【知识点】:

1、2的倍数的特征。

个位上是0,2,4,6,8的数是2的倍数。

2、5的倍数的特征。

个位上是0或5的数是5的倍数。

3、偶数和奇数的定义。

是2的倍数的数叫偶数,不是2的倍数的数叫奇数。

4、能判断一个数是不是2或5的倍数。能判断一个非零自然数是奇数或偶数。

补充【知识点】:

既是2的倍数,又是5的倍数的特征。个位上是0的数既是2的倍数,又是5的倍数。

探索活动(二)3的倍数的特征。

【知识点】:

1、3的倍数的特征。

一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。

2、能判断一个数是不是3的倍数。

补充【知识点】:

1、同时是2和3的倍数的特征。

个位上的数是0,2,4,6,8,并且各个数位上的数字的和是3的倍数的数,既是2的倍数,又是3的倍数。

2、同时是3和5的倍数的特征。

个位上的数是0或5,并且各个数位上的数字的和是3的倍数的数,既是3的倍数,又是5的倍数。

3、同时是2,3和5的倍数的特征。

个位上的数是0,并且各个数位上的数字的和是3的倍数的数,既是2和5的倍数,又是3的倍数。

找因数。

【知识点】:

在1~100的自然数中,找出某个自然数的所有因数。方法:运用乘法算式,思考:哪两个数相乘等于这个自然数。

补充【知识点】:

一个数的因数的个数是有限的。其中最小的因数是1,最大的因数是它本身。

找质数。

【知识点】:

1、理解质数与合数的意义。

一个数只有1和它本身两个因数,这个数叫作质数。

一个数除了1和它本身以外还有别的因数,这个数叫作合数。

2、1既不是质数也不是合数。

3、判断一个数是质数还是合数的方法:

一般来说,首先可以用“2,5,3的倍数的特征”判断这个数是否有因数2,5,3;如果还无法判断,则可以用7,11等比较小的质数去试除,看有没有因数7,11等。只要找到一个1和它本身以外的因数,就能肯定这个数是合数。如果除了1和它本身找不到其他因数,这个数就是质数。

数的奇偶性。

【知识点】:

1、运用“列表”“画示意图”等方法发现规律:

小船最初在南岸,从南岸驶向北岸,再从北岸驶回南岸,不断往返。通过“列表”“画示意图”的方法会发现“奇数次在北岸,偶数次在南岸”的规律。

2、能够运用上面发现的数的奇偶性解决生活中的一些简单问题。

3、通过计算发现奇数、偶数相加奇偶性变化的规律:

偶数+偶数=偶数奇数+奇数=偶数。

偶数+奇数=奇数。

因数与倍数教案及板书设计篇八

1、从操作活动中理解因数与倍数的意义,会判断一个数不是另一个数的因数或倍数。

2、培养学生抽象、概括与观察思考的能力,渗透事物之间相互联系,相互依存的辨证唯物主义观点。

3、培养学生的合作意识、探索意识,以及热爱数学学习的情感。

因数与倍数教案及板书设计篇九

认识因数和倍数(教材第5页内容,以及第7页练习二的第1题)。

1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。

2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。

猜你喜欢